Search results for "Conductometric Transducer"

showing 4 items of 4 documents

Organic Heterojunction Devices Based on Phthalocyanines: A New Approach to Gas Chemosensing.

2020

Organic heterostructures have emerged as highly promising transducers to realize high performance gas sensors. The key reason for such a huge interest in these devices is the associated organic heterojunction effect in which opposite free charges are accumulated at the interface making it highly conducting, which can be exploited in producing highly sensitive and faster response kinetics gas sensors. Metal phthalocyanines (MPc) have been extensively studied to fabricate organic heterostructures because of the large possibilities of structural engineering which are correlated with their bulk thin film properties. Accordingly, in this review, we have performed a comprehensive literature surve…

Materials scienceInsulator (electricity)Review02 engineering and technologyphthalocyanines010402 general chemistrylcsh:Chemical technology01 natural sciencesBiochemistrySignalAnalytical Chemistrylaw.inventionlawSaturation currentheterostucture[CHIM]Chemical Scienceslcsh:TP1-1185Electrical and Electronic EngineeringThin filmInstrumentation[PHYS]Physics [physics]conductometric transducersbusiness.industryTransistorHeterojunction021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesTransducergas sensorsorganic heterojunctionsOptoelectronicstransistorsorganic heterojunction effects0210 nano-technologybusinessLiterature surveySensors (Basel, Switzerland)
researchProduct

Tuning Of Organic Heterojunction Conductivity By The Substituents' Electronic Effects In Phthalocyanines For Ambipolar Gas Sensors

2021

Abstract Exploiting organic heterojunction effects in electrical devices are an important strategy to improve the electrical conductivity, which can be utilized into improving the conductometric gas sensors performances. In this endeavor, the present article reports fabrication of organic heterostructures in a bilayer device configuration incorporating octa-substituted nickel phthalocyanines (NiPc) and radical lutetium bis-phthalocyanine (LuPc2) and investigates their sensing properties towards NH3 vapor. NiPc having hexyl sulfanyl, hexyl sulfonyl and p-carboxyphenoxy moieties are synthesized, which electronic effects are electron donating, accepting and moderate accepting, respectively, al…

Conductometric TransducerMaterials science02 engineering and technologyConductivity010402 general chemistryPhotochemistry01 natural scienceschemistry.chemical_compoundAmmoniaSulfanylMaterials ChemistryElectronic effect[CHIM]Chemical SciencesElectrical and Electronic EngineeringInstrumentationComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationAmbipolar diffusionBilayerMetals and AlloysPhthalocyanineHeterojunctionElectron acceptor021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMolecular materialschemistryHeterojunctionCyclic voltammetryGas sensor0210 nano-technology
researchProduct

Alkylthio-tetrasubstituted μ-Nitrido Diiron Phthalocyanines: Spectroelectrochemistry, Electrical Properties, and Heterojunctions for Ammonia Sensing.

2020

Alkylthio-tetrasubstituted μ-nitrido diiron phthalocyanine complexes are synthesized with n-butyl, iso-butyl, tert-butyl, and n-hexadecyl alkyl moieties. For the first time, a spectroelectrochemical investigation of μ-nitrido diiron phthalocyanines is achieved at all the redox steps. The complexes are stable in all their redox states, unlike their unsubstituted analogues. The interest of the present complexes is to prepare sensing devices by a solution processing method. Films are characterized by electronic absorption and Raman spectroscopies. Electrical measurements on resistors show the highly resistive behavior of these complexes, whatever the chain length. However, when combined with t…

heterojunctionchemistry.chemical_element010402 general chemistryPhotochemistry01 natural sciencesRedoxammoniagas sensorInorganic Chemistrychemistry.chemical_compoundsymbols.namesake[CHIM]Chemical SciencesElectrical measurementsconductometric transducerPhysical and Theoretical Chemistrymolecular materialsAlkylComputingMilieux_MISCELLANEOUSchemistry.chemical_classification010405 organic chemistryIntrinsic semiconductorHeterojunctionLutetium0104 chemical sciencesphthalocyaninechemistryPhthalocyaninesymbolsRaman spectroscopyInorganic chemistry
researchProduct

New n-type molecular semiconductor–doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (Lu…

2018

International audience; Molecular semiconductor–doped insulator (MSDI) heterojunctions were designed using a new family of sublayers, namely triphenodioxazines (TPDO). The device obtained by combining the tetracyano triphenodioxazine bearing two triisopropylsilylethynyl moieties as a sublayer with the lutetium bisphthalocyanine (LuPc2) as a top layer showed a nonlinear current–voltage characteristic independent of the sign of the polarization, which is the signature of MSDI heterojunctions. Thus, a TPDO was used in a chemical sensor for the first time. Despite LuPc2 being the only material exposed to the atmosphere, the positive response of the device under ammonia revealed the key role pla…

Analytical chemistrychemistry.chemical_element02 engineering and technology010402 general chemistryConductometric transducer01 natural sciencesAmmoniachemistry.chemical_compoundMolecular semiconductorAmmonia[CHIM.ANAL]Chemical Sciences/Analytical chemistryMaterials ChemistryTriphenodioxazineElectrical and Electronic EngineeringMolecular materialsInstrumentationChemistrybusiness.industryDopingMetals and AlloysHeterojunction021001 nanoscience & nanotechnologyCondensed Matter PhysicsLutetiumChemical sensor0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[SPI.TRON]Engineering Sciences [physics]/ElectronicsMolecular materialsPositive responseHeterojunctionsOptoelectronics0210 nano-technologybusiness
researchProduct